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On a Problem of A. Rotkiewicz 
By Peter Kiss and Bui Minh Phong 

Abstract. For any fixed positive integers a, k > 2 there are infinitely many composite integers 
n such that an-k = 1 (mod n). 

1. Introduction. A. Rotkiewicz asked in his book the following question. "Let 
a, k > 1 be fixed positive integers. Do there exist infinitely many composite integers 
n such that n I (an-k - 1)?" [5, problem 18, p. 138]. It is well known that the answer 
is affirmative in the case k = 1; the numbers satisfying the condition are called 
pseudoprime numbers to base a. A general result was obtained by A. Makowski [2]: 
For any natural number k > 2 there are infinitely many composite n such that 

(1) an-k 1 (modn) 
for any positive integer a with (a, n) = 1. This result was proved earlier by D. C. 
Morrow [3] in the case k = 3. In his proof, Makowski showed that there are 
infinitely many integers n of the form n = k * p (where p is a prime) such that 
congruence (1) holds for any positive integer a if (a, n) = 1. Naturally, (k, a) = 1 
for these numbers, and so the question remained unanswered if a and k are fixed 
and (k, a) > 1. In the cases (k, a) > 1, A. Rotkiewicz obtained two results: He 
proved that (1) has infinitely many solutions n if k = 3 and a is an arbitrarily fixed 
positive integer, or if k = 2 and a = 2 (see [5, Theorem 32, p. 129] and [6], 
respectively). 

The aim of this paper is to give a general solution of the problem. We prove: 

THEOREM. Let a (> 2) and k be fixed positive integers. Then there are infinitely 
many composite integers n such that 

an-k 1 (modn). 

2. Auxiliary Results. We shall use some lemmas in the proof of our theorem. 

LEMMA 1. Let 

4'n(X) = H1 (xd _ 1)(nl/d) 
dln 

be the nth cyclotomic polynomial, where ,u is the Moebius function. If a and n are 
natural numbers with a > 2 and n > 30, then 

(2) 4?"(a) > n(2n + 1). 
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Proof. First we prove the inequality 

(3) Dn (a) > a'mn 

for every integer a, n > 1, where p) denotes the Euler function. 
Let v(n) denote the number of distinct prime factors of n. For integers 1 < n < 12 

and n = 30, using the definition of On(a), inequality (3) can be seen directly. For 
the others, separating the cases v(n) = 1,2, 3, and v(n) > 4, it can be easily seen 
that 

4p(n) > 2v(n)-1 

But G. D. Birkhoff and H. S. Vandiver [1] showed that 

(4) 1)n(a) > a 

and so (3) indeed holds. 
It is known that q)(n) > n2/3 for n > 30 (see, e.g., [4, p. 38]); therefore, by (3) we 

have 

on (a ) > a 3 

if n > 30. One can check that 

a3 3 > n(2n + 1) 

for n > 99 if a = 2, and for n > 35 if a > 3. In the case a > 3, inequality (2) can be 
seen directly for n = 31, 32, 33 and 34; thus we have to prove the lemma only for 
a = 2 and for integers n for which 30 < n < 99. 

If n > 30 and n is a prime or a prime power (i.e., v(n) = 1), then obviously 

on(2) > 2n/2 > n(2n + 1). 

If v(n) = 2, then cp(n) > n(1 - !)(1 - 3) = n/3, and by (4) we have 

On(2) > 2n/3-2 > n(2n + 1) 

for n > 42; by numerical calculation we can show that On (2) > n(2n + 1) for 
30 < n < 42, too. 

If v(n) = 3 then, similarly as above, q(n) > 14n and 

ODn (2) > 2 4 > n(2n + 1) 
follow for n > 64. But there are only two integers n = 42 = 2 * 3 - 7 and n = 60 = 

22. 3 * 5 for which v(n) = 3 and 30 < n < 64, and by numerical computation we 
get O42(2) > 42 * (2 - 42 + 1) and '60(2) > 60 * (2 - 60 + 1); thus the lemma holds 
in this case. 

If v(n) > 3, then n > 99, which completes the proof of the lemma. 

LEMMA 2. Let a (> 2) be a natural number and let p (> 3) be a prime. If the 
number a belongs to the exponent (p - 1)/2 modulo p (i.e., p I(a(p- 1)/2 -1) but 
p + (a' - 1) for 0 < i < (p - 1)/2), and P(n) denotes the greatest prime factor of n 
with P(1) = 1, then 

(5) ((p-1),2(a) > p ( P ) ) 

unless ( p; a) = (3, 4), (5; 4), (5; 9), (7; 2), (7; 4), (13; 4), (17; 2) or (41; 2). 
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Proof. Since P((p - 1)/2) 6 (p - 1)/2 by Lemma 1, inequality (5) holds for any 
a > 2 and p if (p - 1)/2 > 30, that is, if p > 61. For primes p < 61, Lemma 2 can 
be checked by numerical computation. 

For example, in the case p = 7 we have ?D3(a) > 3 * 7 for a > 4, and of the 
numbers a = 2,3,4 only a = 2 and a = 4 belong to the exponent (p - 1)/2 = 3 
modulo 7. Or another example: if p = 37, then P = (18) = 3 and 018(a) > 37 3 
for a > 2; however, a = 2 does not belong to the exponent 18 modulo 37 since 
37 + (218 - 1). 

LEMMA 3. Let a, k, and m be positive integers satisfying a > 1, m -k > 1, and 
(a,m) = 1. Let a belong to the exponent h(m) modulo m. If h(m)I(m - k) but 
h (im) < m - k, then congruence (1) has infinitely many composite n-solutions, unless 
m - k = 2 and a + 1 is a power of 2, or m - k = 6 and a = 2. 

Proof. Let a, k, and m be integers satisfying the conditions of the lemma. n = m 
satisfies congruence (1) since h(m) I (m - k). As it is well known, for any integer 
n > 1 there is a prime q such that a belongs to the exponent h(q) = n modulo q, 
unless n = 2 and a + 1 is a power of 2, or n = 6 and a = 2 (see [1] or [7]). Thus, 
there exists a prime p for which h(p) = m - k. Since h(m) < h(p) = m - k and 
h(m) I(m - k), we have p + m and h(mp) = m - k. On the other hand, h(p) = 
m - k implies that (m - k)(p - 1), and so mp - k = (m - k)p + k(p - 1) is 
divisible by h (mp) = m - k. From this fact it follows that n = mp also satisfies 
congruence (1), and one can easily see that mp -k > 2 if a > 2 and mp -k > 6 if 
a = 2; furthermore, h(mp) = m - k < mp - k. Continuing this process, we get 
infinitely many solutions of (1). 

3. Proof of the Theorem. Let a and k be fixed positive integers. Using the results 
of Makowski and Rotkiewicz mentioned above, we may assume that 

(6) (k, a) > 1, 

(7) k * 3 

and 

(8) a = 2b > 4 if k = 2, 

where b is an integer. 
First let k = 2 and so, by (8), a > 4 is an integer of the form a = 2b. If a = 4 

and m = 7 - 11 = 77, then h(7) = 3, since 71(43 - 1) but 7 + (41 - 1) for i = 1,2, 
and similarly h(11) = 5. From this it follows that h(77) = 15, and using Lemma 3 
with m = 77, we get infinitely many solutions of (1). 

In the case k = 2, a = 2b > 4, Lemma 3 with m = a - 1 also yields the proof of 
the Theorem, since in this case h(m) = 1 is a divisor of m - k and h(m) < m - k 
=a - 3. 

Now let k > 4. As we have seen above, there is a prime p such that h( p) = k - 1, 
since k - 1 > 2 and, by (6), k- 1 6 if a= 2. For this prime p, Fermat's 
congruence theorem implies that p - k = (p - 1) - (k - 1) is divisible by h(p) = 
k-1; furthermore, p - k O by (6), and so obviously p - k > h(p) = k - 1 > 3 
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and p - k * 6 if a = 2. Thus the assertion of the Theorem follows from Lemma 3 
with m = p if p - k * h(p) = k - 1. Ifp - k = h(p) = k - l and h(p) = h(p2), 
then our assertion can be seen with m = p2 similarly as above, since p2 - k = 

( p2 - 1) - (k - 1) is divisible by h( p2) = k - 1. 
Thus, in the sequel we may assume that k > 4 and p is a prime such that 

h(p) = k - 1, p - k = k - 1, and h(p) * h(p2). 
Let n > 2 be an integer and let {P1 P... Pr } be the set of all primitive prime 

divisors of an - 1; i.e., h(pi) = n for i = 1,...r. If ei > 0 is the greatest integer 
for which p?i I(an -1), i = 1,.. ., r, then 

r 
(9) ~ 'n (a) = X * Flpei 

i=l 

where X = 1 or P(n) (see, e.g., [11). Since by our assumption h(p)= k-1 = 

(p - 1)/2 > 3 and h(p) * h( p2), Lemma 2 and (9) imply that there is a prime q 
for which q * p and h(q) = (p - 1)/2 = k - 1, unless (p; a) is one of the pairs of 
integers listed in Lemma 2. For this prime, h(q) I(q - k) and h(q) < q - k, since 
otherwise p = q would follow. Using Lemma 3 with m = q, the Theorem follows in 
this case. 

If (p; a) is one of the pairs listed in Lemma 2, k > 4 and p - k = k - 1 = h(p), 
then k = (p + 1)/2 and so (k; a) = (2; 4), (3; 4), (3; 9), (4; 2), (4; 4), (7; 4), (9; 2) or 
(21; 2). Since we have proved the Theorem in the case k = 2, by (6) and (7) we have 
to deal only with the cases (k; a) = (4; 2) and (4; 4). 

Using the computer TPA 11-40, we have checked that n j(ank - 1) if n = 40369 
= 7 * 73 * 79 in the case a = 2, k = 4, and if n = 19 - 31 = 589 in the case a = 4, 
k = 4. These numbers n are composite, and so h(n) < n - k. By Lemma 3, this 
completes the proof of the Theorem. 

We note that in the cases (k; a) = (4; 2) and (4; 4) the number n = 7 satisfies 
congruence (1), but it does not imply infinitely many solutions since the condition 
h(m) < m - k of Lemma 3 does not hold for m = 7. For some pairs (k, a) we give 
below a table of the least composite integers n which satisfy congruence (1). In some 
cases, (1) holds for primes less than the numbers given in the table; these cases are 
(k; a; n) = (3; 4; 5), (4; 2; 7), (4; 4; 7), (5; 5;13), and (6; 2; 31). 

We would like to thank G. Dorko and A. Lbng for their valuable help in the 
numerical computations. 

k 2 3 4 5 6 
a 

2 20737 = 89 *233 9 32 40369= 7 73 79 25 52 18631 = 31*601 

3 4 22 9299 = 17 *547 8 = 23 25 52 8 = 23 

4 77 = 7. 11 9 - 32 589 = 19 * 31 15= 35 9 = 32 

5 4=22 9 =.32 6=2 3 62=2 31 8-23 
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